S

’/

Whamcloud

Xfast: Extreme File Attribute Stat Acceleration for
Lustre
Qian Yingjin, Liu Ying

gian@ddn.com, emoly@whamcloud.com
Nov. 3rd 2023

™ ddn

mailto:qian@ddn.com
mailto:emoly@whamcloud.com

Outline fg}
Whamcloud

» Background and motivation

P Xfast design and implementation
* Scalable statahead
* Batch RPC engine
* Subtree aggregate statahead(SAS)
* Size on MDT(SoM)
* Scale-out stathead
* Thrashing avoidance

» Performance evaluation

» Conclusion and future work

whamcloud.com

Background and Motivation S:}
Whamcloud

» Data is growing at an extreme pace
* 10,000,000+ files in a singe directory

» Many HPC applications suffer most from slow directory scans

* Directory tree walks cost much time (minutes to hours)

» How to improve directory tree walks performance

Attribute fetching and caching

Prefetch In Lustre Aggregate

File Attribute Stat

Parallelize

whamcloud.com

)
. ° ’,
File Attribute Stat Whamcloud

» Serialized POSIX interface

* Retrieval only operate on a single directory entry at a time;

* The traversal of a directory with millions of entries can take tens of minutes to complete due to
repetitive stat() calls.

* Use predictable access patterns to prefetch metadata.
» POSIX semantics

* Need to return the most recent file information when listing directories;

* New statx() system call allows applications to request specific attributes to minimize unnecessary
overhead.

* Reduce the number of RPC calls per statx() operation and allowed us to implement lazy and strict
Size on MDT-feature (SoM) for Lustre.

» Parallel prefetching of attributes
* mpiFileUtils + {dfind, drm, dcp, ...}
* Convert the serial stat() access from user process into parallel asynchronous operations.

whamcloud.com

Attribute Fetching and Caching in Lustre S:B
Whamcloud

» Distributed lock manager (DLM)

* Protect data and metadata consistency;

* |f a client holds a read lock, it can access the data or metadata locally, without concern that
another client modifies it.

» stat() path in Lustre [tookup; enqueue——,

1. An RPCis sent to the MDT to acquire a lock; —stat(2)> < e Tock Vot
4 attriputes, 10C

2. MDT returns a protected read (PR) lock, along with
metadata attributes and layout extended
attribute(EA);

3. Send a glimpse PR lock request with the extent
range [0, EOF] to OSTs to obtain the current file <stat(2)—
size and blocks attributes.

glimpse lock 1..N

attributes, lock /

Figure: stat() workflow

!

Client
locks in cache

Cached locks on the client protects the strong consistency for file attribute caching.

whamcloud.com

S

Xfast Design and Implementation s
Whamcloud

» Scalable statahead

» Batch RPC engine I

» Subtree aggregate statahead(SAS)

» Size on MDT(SoM)

» Scale-out stathead -

» Thrashing avoidance

whamcloud.com

Overview of released Lustre feature about xFast

Feature

FLAT statahead

Asynchronous glimpse lock

Lazy size on MDT(LSoM)

Strict size on MDT (SSoM)

Batch RPC engine

Batched statahead

Subtree aggregate statahead (SAS)
Scale-out statahead(pENT, pSTL and pSTH)

File naming pattern statahead

Lustre version
v1.8

v.2.2

V2.12

new

V2.14

V2.16

new

new

In merging

Year
2009
2012
2018

2021
2023

2023

Scalable Statahead S:}

Whamcloud
» Flat statahead algorithm (Lustre 1.8 in
2009) _ Lustre cIi_ent rgadahgad
* Traverse a flat directory: opendir() followed readdir(2) | | FLAT algorithm dir entries
. readdir() 1MiB bulk RPC

by readdir() and stat();

* Launch a kernel statahead thread when kernel wir2) « readahead dir entries Mot
rea Ir

detects user stat() in readdir() order; < varallel prefetch

* The statahead thread is notified to release its 2, launch of Inode attributes

for dir entries
statahead thread D

»(Statahead
thread

resources when the user process stops the
directory traversal by calling closedr(). «—

create inode and
place into dcache

» Asynchronous glimpse lock (AGL) for
Size (Lustre 2.21n 2012) fetch size attributes for current stat() cal

* Once obtain attributes form MDT, push it into
AGL pipeline; stat(2)

* AGL thread scans its pipeline, send
asynchronous glimpse RPC to OSTs to fetch Figure: Simplifile statahead workflow for 1s -1
file size.

whamcloud.com

Batch RPC Engine (Lustre 2.16 in 2023) S:B
Whamcloud

» Statahead batching packs several dentry names resulting from a
readdir() call into one large batched RPC, which is transferred via bulk

/0.

* Increase communication efficiency

* Reduce the message size by compacting requests with a similar format.

* batch_max controls the maximum number of items to batch in one aggregate RPC.

* statahead _max controls the statahead window size, default 1024 (batch_max <= statahead max)

whamcloud.com

Subtree Aggregate Statahead (SAS) S:}
Whamcloud
» Tools find, du are Depth First Search(DFS) access pattern.

» SAS: FLAT + DFS

* It always starts with FLAT algorithm and if traversal process drills down into the first subdirectory, it
changes into DFS mode.

* |t is controlled via statahead_max for a directory and via dmax for a new maximum subdirectory
lookahead.

0

.o | d
fo | f1 | d1 | f2 | d3
[f6—f10,d2]@>/ \ @[f11—f15,d4]

(1) [fo-f5, d1, d3]
f3 | f4 | 15

fe | f7 | f8 | d2 | f9 | f10 f11 | f12 | f13 | d4 | f14 | f15
[f16 — 18] @/ /@ [f19 - f26]
fie | f17 | f18 f19 | f20 | f21 | f22 | f23 | f24 | f25 | f26 | f27

Figure: SAS algorith for DFS mode (statahead_max = 8, dmax = 3)

whamcloud.com

Size on MDT (SoM) Wha'glb .
mciou

» Lazy SoM (LSoM, Lustre 2.12 in 2018)

* Reduces the number of RPCs required to fetch the size of a file, but cannot
guarantee its accuracy.

o Store the latest file size update and its block count as extended attributes on MDT, which can be
accessible via a single RPC without accessing several OSTs

o Update on the file close() and truncate() on MDT.

» LSoM -2 Strict SoM (SSoM)

* An entry is added into the Lustre changelog every time when a file is opened for write or
being truncated.

* A dedicated Lustre client uses a lease lock to access these changelog records.
A flag can be specified in stat() to return strict or lazy size information.

whamcloud.com

S

Scale-out Statahead 4
Whamcloud

» Combine Xfast with mpiFileUtils to provide scale-out performance for tree walks

* Parallel stat on entires (pENT)
oA single file is the minimal work set for the parallel tree walk.
o Files within a directory can therefore be randomly distributed among different MPI ranks.
o Break the sequential stat() order from readdir().
* Statahead with limit (pSTL)
o Trade-off strategy that balances parallelization and stata-head speedup .
o Perform a local directory walk for the first stmax (default 256) files in a directory by FLAT algorithm
o Enqueues the remaining entries into the global libCircle queue.
* Statahead by hash division (pSTH)

oHashing the filename ensures that file names and file name sizes evenly partition the hash key
space, especially for a larger directory.

o Split stat() workload under a directory according to the hash space evenly (by segment_size).

whamcloud.com

S

Thrashing Avoidance s
Whamcloud

» |f statahead guesses the wrong access pattern, scarce memory and 1/0
bandwidth would be wasted.

» In this case

» Statahead decreases the next statahead window size by a factor of 2

* When it decreases to 1, it waits for the traversing process until it catches up to the
current statahead position or exits and disables statahead processing

* When the traversing process catches up, it enlarges the window size again.

whamcloud.com

Performance Evaluation S:)

Whamcloud
» Flat directory traversal o Testing Environment:
. * Lustre version: 2.14
* Comparison of FLAT and SSoM * Server: 1MDT, 8 OSTs (DDN Al400X Appliance (20x
¢ Client-side caching of file attributes SAMSUNG 3.84 TB NVMe, 4X IB-HDR100))

e Client:16 nodes (1x Intel Gold 5218 processor, 96 GB
DDR4 RAM, CentOS 8.1 Linux)

P SAS algorithm * Network: Infiniband IB-HDR100(by default) + 1 Gbps
Ethernet interface
* FLAT vs. SAS

* Network bandwidth impact including batching

o The Lustre Network Request Scheduler Token Bucket

> Scale-o ut stata head Filter (NRS-TBF) is used to enforce RPC rate limitations to
emulate different server capabilities.
* pENT vs. pSTL vs. pSTH

o Tool netem is used to emulate different network conditions
» |0500 mdtest with delays of 1-10ms into the 1 Gbps Ethernet network.

o The tuple XXX(i, j) with j <i defines the combination of
statahead_max=i and batch_max=j.

whamcloud.com

Comparison of FLAT and SSoM S:B
Whamcloud

/s - command on a directory with 1M file entries on different stripe count between 1 and 16 OSTs

7000 _ o . FLAT(1,1) /,0710
600 - ssOM(1, 1) 2
0 500 -¥-- SSOM(1024, 1) e
E 2 400 -> FLAT(1024, 1) AGL off O
€O ~#-- FLAT(1024, 1) AGL on e 7
23300 o o et o
~ 200 -&===mT=mTEC « =t >
100]é0==========*-"‘-::::::—)6-—:::::::::%—-’—’— _______ =
O 35 -=========*=====:::::* __________ _v_ __________ -y
1 2 4 8 16

stripe count

whamcloud.com

Client-Side Caching of File Attributes ‘3:5

Whamcloud
Is -l for 1K to 1M files for FLAT(1,1) on a single OST
files Cold cache (s) Warm cache (s)
1,000,000 221 15.7
100,000 21.5 0.993
10,000 2.26 0.102
1,000 0.253 0.015

Statahead performance with write conflicts
Is -/ with FLAT(1024, 1)

nodes 0 2 4 6 8 10
Time (s) 42 62 115 170 228 229

whamcloud.com

runtime baseline

Network bandwidth impact including batching

512{ % :
—_ -x-- FLAT(i, 1)
)]
©
o

256
] X Asynchronous stat()

2 . RPCengine
& X
g 128 \

\
= X,
2 e
64 o e i R)(',[X\
S I T TN Ry bv &Qw
Statahead wmdow size
//x
10K -
X

—_ /,
wn) 8K //
= X
= ,

8 6K d
] X

Y 4k P

X
7
2K .
7
X
0.1 1 2 3 4 5

latency (ms)

512

256

128

runtime (seconds)
(o))
D

32

200

speedup ratio

\ %~ FLAT(1024, i)
\ —-+—- FLAT(i, i)
\
** Batch stat()
*RPC engine
*\
X, e
/x~9(\ ‘*—
x—»«-xw
N X ”

G I R
° A %)y R
Batch degree

B FLAT(1024, 1)
L FLAT(1024, 25
BN FLAT(1024, 1024)

01 1 2 3 4 5
latency (ms)

whamcloud.com

S

7/

Whamcloud

Impact of statahead max and batch_max

FLAT(1024, 256)

1 Gbps Ethernet, stripe_count =1, AGL enabled

Speedup ratio for high network latencies
(compared to FLAT(1,1))

SAS Algorithm(FLAT+DFS) Evaluation '3:5
Whamcloud

Traversed a directory containing 16 Linux source trees (linux-5.12-rc5) via the command find src -uid 0 with dmax=16.

find using FLAT vs. DFS mode

Mode Thread count stat() RPCs Time (s)
FLAT(1024, 1) 75,697 1,219,008 114
FLAT(1024, 256) 75,665 108,439 112
SAS(1024,1) 1 1,219,544 73
SAS(1024, 256) 1 21,108 68

FLAT vs. DFS for different network latencies

Latency(ms) 0.1 1 2 3 4 5
Baseline 1083 3931 6653 9354 12036 14730
FLAT(1024,1) 290 916 1564 2187 2823 3439
FLAT(1024,256) 286 876 1479 2056 2649 3245
SAS(1024, 1) 156 404 691 986 1261 1548
SAS(1024, 256) 163 314 491 674 866 1057

whamcloud.com

Scale-out Statahead Evaluation S

2/
Whamcloud
Ran dwalk and dfind commands on a flat directory with 1M files and a directory including 16 Linux source code trees.
(stmax=256, segment_size=4096)

300
40 mEE pENT
~ = 250 EEE pSTL
T 530 w NN\
_% é % 8 200 pSTH
()] [ONe]
€820 Eg
e 22100
2 10 2
50
0 1 2 R 8 16 0 10K 20K 40K 80K unlimited
tasks per node

server capacity (IOPS)
dwalk on resource-limited metadata servers

Statahead combined with mpiFileUtils on 16 nodes

800

Emm pENT
600 EEE pSTL
BN pSTH

runtime dfind
(seconds)
I
o
o

1 2 3 4 5
added network latency (ms)

dfind runtimes with various network latencies

whamcloud.com

|O500 mdtest - Sustained Performance Enhancements

ESA400NV ESA00NVX ES400NVX2

— 12 x CPU/node(1.5x)

— 1 x HDR200/node(2x)
— PCIGen4 NVMe (2x)

Storage Platform
8 x CPU/node
1 x EDR/node
PCIGen3 NVMe

Performance improvement
goes beyond what hardware
upgrades can achieve

Pre-SC19 SC19 ISC20 1ISC22 SC22 1ISC23 ISC23/PreSC19
IOR Easy Write 25.88 28.62 37.56 55.95 58.07 57.88 2.2x
IOR Easy Read 39.94 41.72 45.95 83.86 77.56 79.08 2.0x
IOR Hard Write 2.78 2.96 2.77 5.02 5.27 5.38 2.0x
IOR Hard Read 8.99 42.19 40.81 39.73 49.36 50.77 5.6x
Find 1,735.41 810 1,698.00 6,248.55 12628.78 13,229.11 7.6X
Mdtest Easy Write 143.88 152.84 157.22 270.04 312.9 344.70 2.3x
Mdtest Easy Stat 455.03 451.97 453.51 740.01 1,278.50 1,276.31 2.8x
Mdtest Easy Delete 88.52 132.76 135.09 223.61 272.64 311.16 3.5x
Mdtest Hard Write 32.33 79.65 90.47 119.41 157.4 199.36 6.1x
Mdtest hard Read 44,92 172.59 169 194.33 238.82 391.09 8.7x
Mdtest Hard Stat 20.41 449.93 446.75 514.36 1,214.03 1,105.33 54.1x
Mdtest Hard Delete 16.35 75.15 76.94 101.98 122.44 112.58 6.8x
Bandwdith 12.68 19.65 21.02 31.10 32.90 33.43 2.6x
IOPS 91.41 207.62 232.69 368.48 544.23 603.39 6.6X
Score 34.05 63.87 69.93 107.05 133.81 142.03 4.1x

https://io500.0rg/submissions/view/657

S

Conclusion and Future Work ’7
Whamcloud

P Xfast can significantly improve the performance of common directory
operations.

» Future work

* Other statahead patterns and optimizations

oFile naming statahead pattern
oGiven an input file name list, do batched statahead.
oCombining with statahead and readahead.

* Improve prefetching pipeline

whamcloud.com

S

7/

Whamcloud

Thank You!

STORAGE

