
Andreas Dilger, Whamcloud

Lustre 2.14 and Beyond

whamcloud.com

Upcoming Release Feature Highlights

►2.13 feature complete, ETA November, 2019
• Persistent Client Cache (PCC) – store file data in client-local NVMe/NVRAM
• LNet Multi-Rail Routing – extend MR to/through routers, handle mixed interfaces
• DNE space balanced remote directory – improve load/space balance across MDTs
• Layout OST Overstriping – allow multiple objects from one OST in a striped file
• Self-Extending Layouts (SEL) – better handle OST out-of-space in the middle of a file

►2.14 has a number of features under active development
• DNE directory auto-split – improve usability and performance with multiple MDTs
• File Level Redundancy - Erasure Coding (EC) – efficiently store striped file redundancy
• OST Pool Quotas – manage space on tiered storage targets using OST pools

►2.15 plans continued functional and performance improvements
• Metadata Writeback Cache (WBC) – low latency file operations in client RAM
• Client-side data encryption – persistent encryption from client to disk

whamcloud.com

Persistent Client Cache (PCC) (LU-10092) (2.13)

►Reduce latency, improve small/unaligned IOPS, reduce network traffic
►PCC integrates Lustre with a persistent per-client local cache storage
• A local filesystem (e.g. ext4 or ldiskfs) is created on client device (SSD/NVMe/NVRAM)
• Data is local to client, no global/visible namespace is provided by PCC
• HSM POSIX copytool fetches whole files into PCC by user command, job script, or policy
• New files created in PCC are also created on Lustre MDS

► Lustre uses local PCC data, or normal OST RPCs
• Further file read/write access “directly” to cache file
• No data/IOPS/attributes off client while file in PCC
• File migrated out of PCC via HSM upon remote access

►Separate shared read vs. exclusive write cache
► Integrate with DAX for NVRAM cache device

OST OST OST

NVMe
HSM

LOV

llite PCC Switcher

Cache IONormal
IO

Fetch
NVMe

HSM

LOV

llite PCC Switcher

Cache IONormal
IO

Fetch2.13

2.14

https://jira.whamcloud.com/browse/LU-10092

whamcloud.com

DNE Improvements (2.13+)

►Space balance new directories on "best" MDT based on available inodes/space
• Simplifies multiple MDTs without overhead of striping all directories, similar to OST balance

• Explicitly when creating a new directory with "lfs mkdir –i -1" (LU-10277)

• Transparently select "best" MDT for normal mkdir() based on parent policy (LU-10784, LU-11213)

o Set default policy on parent via "lfs setdirstripe –i -1 dir"

oMost useful for root directory and top-level user directories

► Improved DNE file create performance for clients (LU-11999, Uber)

►Automatic directory restriping as directory size grows (LU-11025)
• Create one-stripe directory for low overhead, scale shards/capacity/performance with size

• Add extra directory shards when master directory grows large enough (e.g. 10k entries)

• Move existing dirents to new directory shards

• New dirents and inodes created on new MDTs Master +4 dir shards +12 directory shards

2.13

2.14

2.12

https://jira.whamcloud.com/browse/LU-10277
https://jira.whamcloud.com/browse/LU-10784
https://jira.whamcloud.com/browse/LU-11213
https://jira.whamcloud.com/browse/LU-11999
https://jira.whamcloud.com/browse/LU-11025

whamcloud.com

Data-on-MDT (DoM) Improvements (2.13+)

►Convert write locks to read locks w/o cache flush (LU-10175)
►General usability and stability improvements
►FLR mirror/migrate DoM file (LU-11421)
• Mirror DoM data to OST object
• Migrate DoM data to/from OST object
• No MDT-MDT mirroring yet

►Performance and functional improvements
• Target IO-500 mdtest-hard-{write,read} (3901-byte parallel file create in shared dir)

►Dynamic DoM component size by MDT free space (LU-12785)
►Merge data write with MDS_CLOSE RPC (LU-11428)
►Cross-file data prefetch via statahead (LU-10280)
►Allow MDT-only filesystem (LU-10995)

2.13
2.14

DoM OST Object j (PRIMARY, PREFERRED)

OST Object k (STALE) delayed resync

https://jira.whamcloud.com/browse/LU-10175
https://jira.whamcloud.com/browse/LU-11421
https://jira.whamcloud.com/browse/LU-12785
https://jira.whamcloud.com/browse/LU-11428
https://jira.whamcloud.com/browse/LU-10280
https://jira.whamcloud.com/browse/LU-10995

whamcloud.com

LNet Multi-Rail Selection Policy (2.13+)

►Multi-Rail routing (LU-11299)
• Extend LNet Multi-Rail to router nodes
• Improve handling of mixed MR/single networks

►User Defined Selection Policy (LU-9121)
• Fine grained control of interface selection
oTCP vs. IB networks, primary vs. backup

• Optimize RAM/CPU/PCI data transfers
• Useful for large NUMA machines

2.13

2.14

https://jira.whamcloud.com/browse/LU-11299
https://jira.whamcloud.com/browse/LU-9121

whamcloud.com

Improved Client Efficiency for AI/ML (2.13+)

►Single thread create performance on DNE (LU-11999, Uber)
• Reduce locking overhead/latency for single-threaded workloads (780/sec -> 2044/sec)

►Parallel client readahead performance (LU-8709, LU-12043)
• Improved single-threaded readahead (e.g. "dd") from 1.9GB/s -> 4.0GB/s

►Overstriping OST objects better use of large/fast OSTs from fewer clients (LU-9846)
• "lfs setstripe -C|--overstripe-count stripe_count" for multiple objects per OST

► Improved small file handling (IO-500 mdtest-hard-{write,read} performance)
• Cache small files after create (LU-11623, LU-12325, LU-10948, ...)

► Improved strided read/write (IO-500 ior-hard-{write,read} performance)
• Detect and handle page-unaligned strided reads (LU-12644)
• Kernel lockahead for strided writes (LU-12550)
• Allow readahead to continue for slightly "imprecise" strides

► Local client mount on OST/MDT for data mover/resync (LU-10191)
• Beginning of optimization for local IO path to avoid RPC + data copy

2.13

2.14

https://jira.whamcloud.com/browse/LU-11999
https://jira.whamcloud.com/browse/LU-8709
https://jira.whamcloud.com/browse/LU-12043
https://jira.whamcloud.com/browse/LU-9846
https://jira.whamcloud.com/browse/LU-11623
https://jira.whamcloud.com/browse/LU-12325
https://jira.whamcloud.com/browse/LU-10948
https://jira.whamcloud.com/browse/LU-12644
https://jira.whamcloud.com/browse/LU-12550
https://jira.whamcloud.com/browse/LU-10191

whamcloud.com

Performance Improvements for Flash (2.12+)

►Reduce server CPU overhead to improve small flash IOPS (LU-11164)
• Reduced CPU usage translates directly to improved IOPS

►Avoid page cache on ldiskfs flash OSS (LU-11347)
• Avoids CPU/lock overhead/lock for page eviction

►TRIM flash storage on ldiskfs (LU-11355)
• Release unused blocks of filesystem via fstrim

►Self Extending Layouts (LU-10070, Cray)
• Avoids out-of-space in the middle of files
• Good for PFL with smaller flash OSTs than disk OSTs

►Continued reductions of overhead and latency
• Improve small, unaligned and interleaved writes
• Improve IO-500 ior-hard-write

2.13
2.14

2.12

0

200

400

600

800

1000

1200

1400

1600

4K 8K 16K 32K 64K 128K

IO
PS

 (K
op

s/
se

c)

IO Size (Bytes)

b2_10 b2_12 master

Single Client 4KB Random Read IOPS

IOPS B/WIOPS and B/W

Network B/W Limit

https://jira.whamcloud.com/browse/LU-11164
https://jira.whamcloud.com/browse/LU-11347
https://jira.whamcloud.com/browse/LU-11355
https://jira.whamcloud.com/browse/LU-10070

whamcloud.com

Ongoing ldiskfs Improvements (2.13+)

►Major ldiskfs features merged into upstream ext4/e2fsprogs
• Large xattrs (up to 64KB/xattr) stored in separate inode (ea_inode)
• Large directories over 10M entries/2GB (large_dir)
• Project quota accounting/enforcement (project)

►One more Lustre-specific feature remains to be merged to ext4/e2fsprogs
• Extended data in directory (dirdata) - needs unit test interface before merge

►Existing ext4 features available that could be used by Lustre on ldiskfs
• Efficient block allocation for large OSTs (bigalloc)

• Tiny files (1-600/3800ish bytes) stored directly in the MDT 1KB/4KB inode (inline_data)
• Metadata integrity checksums (metadata_csum)

►New ext4 features currently under development
• Data Verity – Merkle tree of data checksums stored persistently on read-only files
• Directory shrink – reduce directory block allocation as files deleted

2.13

2.14

2.15

whamcloud.com

File Level Redundancy (FLR) Enhancements (2.13+)

► Lustre-level mirroring for files, configured arbitrarily per file/directory
►Mirror NOSYNC flag + timestamp to allow file version/snapshot (LU-11400)
►Mount client directly on OSS without impacting recovery (LU-12722)
► "lfs mirror resync/delete --pool" to simplify tiering (LU-11022)
►Erasure coding adds redundancy without 2x/3x mirror overhead (LU-10911)
• Add erasure coding to new/old striped files after write done
• Leverage CPU-optimized EC code (Intel ISA-L) for best client performance
• For striped files - add N parity per M data stripes (e.g. 16d+3p)
• Fixed RAID-4 parity layout per file, declustered Parity across files to avoid IO bottlenecks

►HSM in composite layout (LU-10606)
• Allow multiple archives per file (S3, tape, ...)
• Allow partial file restore from archive

►File version/reflink within namespace?
• Access like VAX/VMS using "filename,1"?

Replica 0 Flash Object j (PRIMARY, PREFERRED)

Replica 1 HDD Object k (STALE) delayed resync

Replica 2 HSM S3 Archive

2.13
2.14

2.15

TBD

https://jira.whamcloud.com/browse/LU-11400
https://jira.whamcloud.com/browse/LU-12722
https://jira.whamcloud.com/browse/LU-11022
https://jira.whamcloud.com/browse/LU-10911
https://software.intel.com/en-us/storage/ISA-L
https://jira.whamcloud.com/browse/LU-10606

whamcloud.com

Miscellaneous Improvements (2.13/2.14)

►Overstriping allows multiple file stripes per OST (LU-9846, Cray/WC)
• Useful for shared-file workloads or very large OSTs

►lfs find integration with Lazy Size-on-MDT (LU-11367)
►Upstream kernel client cleanups still under active development/merge (ORNL/SuSE)
►Pool Selection Policy by filename extension, NID, UID/GID (LU-11234)
►Dynamic OSS page cache based on RPC IO size (LU-12071)
►fallocate() for file preallocation (ldiskfs only), hole punch (LU-3606)
►statx() for lightweight attribute fetching (LU-10934)
►O_TMPFILE for creating temporary files outside namespace (LU-9512)

2.13
2.14

https://jira.whamcloud.com/browse/LU-9846
https://jira.whamcloud.com/browse/LU-11367
https://jira.whamcloud.com/browse/LU-11234
https://jira.whamcloud.com/browse/LU-12071
https://jira.whamcloud.com/browse/LU-3606
https://jira.whamcloud.com/browse/LU-10934
https://jira.whamcloud.com/browse/LU-9512

whamcloud.com

►Account/limit space for OSTs in a specific pool
• Control usage of small flash OSTs in tiered config

►Use existing Lustre quota infrastructure
• OST already tracks space per UID/GID/ProjID
• Pool usage based on sum of current OSTs in pool

►Add pool quota limits per UID/GID/ProjID
• No extra accounting on the OSTs
• Only new aggregation/reporting by MDS

►Add MDT pools after OST pools complete
• Manage DoM space usage
• Allow different MDT storage classes (e.g. NVRAM)

Metadata
Servers
(~100s)

Object
Storage
Servers
(1000s)

Main Metadata
Targets (MDTs)

Capacity OSTs
(hdd OST Pool)

Lustre Clients
(10,000s)

Local
NVRAM
MDTs

Cold Tier FLR EC
(archive OST Pool)

Policy
Engine

Local NVMe Tier
(flash OST pool)

2.14
TBD

Pool Quotas for OSTs (LU-11023, Cray) (2.14+)

https://jira.whamcloud.com/browse/LU-11023

whamcloud.com

►Protect from storage theft/mistakes network/admin snooping

►Encryption on Lustre client down to storage

• Applications see clear text in client cache

• Data is encrypted before sending to servers

• Data is decrypted after receiving from servers

• Servers/storage only see encrypted data/filenames

• Only client nodes need access to user encryption keys

• Transparent to backend filesystem/storage (ldiskfs/ZFS)

• Utilize larger client CPU/accelerator capacity

►Ext4/f2fs fscrypt library/tools base (don't invent it!)

• Tunable encryption setting/key(s) per directory tree

• Per-file encryption key(s), itself encrypted by user key
o Fast and secure deletion of file once per-file key is erased

• Filenames encrypted in MDT directory entries

Client-Side Data Encryption at Rest (LU-12755) (2.15)

https://jira.whamcloud.com/browse/LU-12755

whamcloud.com

►Create new dirs/files without RPCs in client RAM (or local NVMe)
• Lock new directory exclusively at mkdir time
• Cache new files/dirs/data only in RAM/local NVMe until cache flush

►No RPC round-trips for file modifications in new directory
►Files globally visible on flush to MDS, normal usage afterward
• Flush top directory to MDS upon other client access, lock conflict
o Create top-level entries, exclusively lock new subdirs, release parent
o Repeat as needed for portion of namespace being accessed remotely
• Flush rest of tree in background to MDS/OSS by age or size limits

►Basic WBC prototype developed to test concept
• No cache/quota/space limits, no background flushing, no batching, ...
• 10-20x single-client speedup in early testing (untar, make, …)

►Aggregate operations to server to improve performance
• Batch operations in one RCP to reduce network traffic/handling
• Batch operations to filesystem to reduce disk IOPS

Client

MDS

Client

OSS

Files &
Dirs

B
a
t
c
h

Files &
Dirs

B
U
L
K

B
U

L
K

B
a

t
c

h

D
o
M

2.15
2.16

Metadata Writeback Cache (WBC) (LU-10983) (2.15+)

https://jira.whamcloud.com/browse/LU-10983

whamcloud.com

► Ext4 filesystem images used ad-hoc with Lustre in the past
• Read-only cache of many small files manually mounted on clients
• Root filesystem images for diskless clients/VMs

► Container Image is loopback ldiskfs mount on client
• Whole directory tree (maybe millions of files) in one Lustre image file
• Best for self-contained workloads (e.g. embarrassingly parallel)
• Optimize common AI, Genomics workloads
►CCI integrates container image handling with Lustre
• Image is registered to Lustre directory to automate future access
• Transparently mounts registered image at client on directory access
• Image data blocks read on demand from OST(s) and/or client cache
• Images still part of namespace, allow some sharing between clients

Client
CCI

Files &
Dirs

OSS

CCI

Client

CCI

CCI

Files &
Dirs

B
U
L
K

B
U

L
K

Client Container Image (CCI) (TBD)

whamcloud.com

Single Client 32KB File Create Performance (MDS vs. CCI)

Network Bandwidth Limit

► Kernel 4.15 CCI improvement due to improved kernel loopback driver
► Early testing of CCI prototype shows promise

(Ubuntu1804)

Ba
nd

w
id

th
 (M

B/
s)

3.10 CCI File Create/s (mean of 3 iterations)
3.10 MDS File Create/s (RHEL 7.5)
4.15 CCI File Create/sec (Ubuntu 1804)
3.10 CCI IO Bandwidth (MB/s)
3.10 MDS IO Bandwidth (MB/s)
4.15 CCI IO Bandwidth (MB/s)

whamcloud.com

► Low I/O overhead, few file lock(s), high IOPS per client
• Readahead and write merging for data and metadata
• Client-local in-RAM filesystem operations with very low latency

►Access, migrate, replicate image with large bulk OSS RPCs
• Thousands of files aggregated with MB-sized network transfers
• Leverage existing high throughput OSS bulk transfer rates
• 1GB/s OSS read/write provides about 30,000 32KB files/sec

►Unregister+delete CCI to remove all its files with a few RPCs
• Simplifies user data management, accounting, job cleanup
• Avoid MDS overhead dealing with large groups of related files

Client
CCI

Files &
Dirs

OSS

CCI

Client

CCI

CCI

Files &
Dirs

B
U
L
K

B
U

L
K

CCI Performance Optimization Areas

whamcloud.com

CCI Access Models

► Need to integrate image handling on Lustre client/MDS
• Integrate CCI creation with job workflow is easiest

• CCI layout type on parent directory creates CCI upon mkdir
• Improve ldiskfs online resize to manage image size

► One client exclusively mounts CCI(s) and modifies locally
• For initial image creation/import from directory tree

• For workloads that run independently per directory tree

► Multiple clients read-only mount single image
• Shared input datasets (e.g. gene sequence, AI training)

► MDS exports shared read-write image to many clients
• Internal mount at MDS attaches image to namespace

• Use Data-on-MDT to transparently export image tree to clients

► Process whole tree of small files for HSM/tiering
• Efficiently migrate tree to/from flash tier, to/from archive

Client
CCI-RO

Files &
Dirs

OSS

CCI

Client
CCI-RO

Files &
Dirs

CCI

MDS

Client

File

Client

File

CCI-SHARED

B
U

L
K

B
U

LK

BULK

Files &
Dirs

whamcloud.com

Comparison and Summary of WBC vs. CCI

Metadata Writeback Cache

• Keep normal namespace
• Fully transparent to users and apps
• Very low latency metadata operations
• Faster single client performance
• Network batch RPCs improves other ops
• Lower total overhead due to fewer layers

Client Container Image

• Segregated directory subtree
• Needs directive from user/job to create
• Not for all usage patterns
• Faster aggregate system performance
• Network bulk IO reduces MDS workload
• Aggregation simplifies dataset handling
• Fast unlink, dataset prefetch

• Usable for metadata tiering/HSM

• Significant improvements for evolving HPC workloads
• Leverages substantial functionality that already exists

Confidential

