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Upcoming Release Feature Highlights

►2.13 feature complete, ETA November, 2019
• Persistent Client Cache (PCC) – store file data in client-local NVMe/NVRAM
• LNet Multi-Rail Routing – extend MR to/through routers, handle mixed interfaces
• DNE space balanced remote directory – improve load/space balance across MDTs
• Layout OST Overstriping – allow multiple objects from one OST in a striped file
• Self-Extending Layouts (SEL) – better handle OST out-of-space in the middle of a file

►2.14 has a number of features under active development
• DNE directory auto-split – improve usability and performance with multiple MDTs
• File Level Redundancy - Erasure Coding (EC) – efficiently store striped file redundancy
• OST Pool Quotas – manage space on tiered storage targets using OST pools

►2.15 plans continued functional and performance improvements
• Metadata Writeback Cache (WBC) – low latency file operations in client RAM
• Client-side data encryption – persistent encryption from client to disk
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Persistent Client Cache (PCC) (LU-10092) (2.13)

►Reduce latency, improve small/unaligned IOPS, reduce network traffic
►PCC integrates Lustre with a persistent per-client local cache storage
• A local filesystem (e.g. ext4 or ldiskfs) is created on client device (SSD/NVMe/NVRAM)
• Data is local to client, no global/visible namespace is provided by PCC
• HSM POSIX copytool fetches whole files into PCC by user command, job script, or policy
• New files created in PCC are also created on Lustre MDS

► Lustre uses local PCC data, or normal OST RPCs
• Further file read/write access “directly” to cache file
• No data/IOPS/attributes off client while file in PCC
• File migrated out of PCC via HSM upon remote access

►Separate shared read vs. exclusive write cache
► Integrate with DAX for NVRAM cache device
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https://jira.whamcloud.com/browse/LU-10092
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DNE Improvements (2.13+)

►Space balance new directories on "best" MDT based on available inodes/space
• Simplifies multiple MDTs without overhead of striping all directories, similar to OST balance 

• Explicitly when creating a new directory with "lfs mkdir –i -1" (LU-10277)

• Transparently select "best" MDT for normal mkdir() based on parent policy (LU-10784, LU-11213)

o Set default policy on parent via "lfs setdirstripe –i -1 dir"

oMost useful for root directory and top-level user directories

► Improved DNE file create performance for clients (LU-11999, Uber)

►Automatic directory restriping as directory size grows (LU-11025)
• Create one-stripe directory for low overhead, scale shards/capacity/performance with size

• Add extra directory shards when master directory grows large enough (e.g. 10k entries)

• Move existing dirents to new directory shards

• New dirents and inodes created on new MDTs Master +4 dir shards +12 directory shards

2.13

2.14

2.12

https://jira.whamcloud.com/browse/LU-10277
https://jira.whamcloud.com/browse/LU-10784
https://jira.whamcloud.com/browse/LU-11213
https://jira.whamcloud.com/browse/LU-11999
https://jira.whamcloud.com/browse/LU-11025
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Data-on-MDT (DoM) Improvements (2.13+)

►Convert write locks to read locks w/o cache flush (LU-10175)
►General usability and stability improvements
►FLR mirror/migrate DoM file (LU-11421)
• Mirror DoM data to OST object
• Migrate DoM data to/from OST object
• No MDT-MDT mirroring yet

►Performance and functional improvements
• Target IO-500 mdtest-hard-{write,read} (3901-byte parallel file create in shared dir)

►Dynamic DoM component size by MDT free space (LU-12785)
►Merge data write with MDS_CLOSE RPC (LU-11428)
►Cross-file data prefetch via statahead (LU-10280)
►Allow MDT-only filesystem (LU-10995)

2.13
2.14

DoM OST Object j (PRIMARY, PREFERRED)

OST Object k (STALE) delayed resync

https://jira.whamcloud.com/browse/LU-10175
https://jira.whamcloud.com/browse/LU-11421
https://jira.whamcloud.com/browse/LU-12785
https://jira.whamcloud.com/browse/LU-11428
https://jira.whamcloud.com/browse/LU-10280
https://jira.whamcloud.com/browse/LU-10995
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LNet Multi-Rail Selection Policy (2.13+)

►Multi-Rail routing (LU-11299)
• Extend LNet Multi-Rail to router nodes
• Improve handling of mixed MR/single networks

►User Defined Selection Policy (LU-9121)
• Fine grained control of interface selection
oTCP vs. IB networks, primary vs. backup

• Optimize RAM/CPU/PCI data transfers
• Useful for large NUMA machines

2.13

2.14

https://jira.whamcloud.com/browse/LU-11299
https://jira.whamcloud.com/browse/LU-9121
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Improved Client Efficiency for AI/ML (2.13+)

►Single thread create performance on DNE (LU-11999, Uber)
• Reduce locking overhead/latency for single-threaded workloads (780/sec -> 2044/sec)

►Parallel client readahead performance (LU-8709, LU-12043)
• Improved single-threaded readahead (e.g. "dd") from 1.9GB/s -> 4.0GB/s

►Overstriping OST objects better use of large/fast OSTs from fewer clients (LU-9846) 
• "lfs setstripe -C|--overstripe-count stripe_count" for multiple objects per OST

► Improved small file handling (IO-500 mdtest-hard-{write,read} performance)
• Cache small files after create (LU-11623, LU-12325, LU-10948, ...)

► Improved strided read/write (IO-500 ior-hard-{write,read} performance)
• Detect and handle page-unaligned strided reads (LU-12644)
• Kernel lockahead for strided writes (LU-12550)
• Allow readahead to continue for slightly "imprecise" strides

► Local client mount on OST/MDT for data mover/resync (LU-10191)
• Beginning of optimization for local IO path to avoid RPC + data copy

2.13

2.14

https://jira.whamcloud.com/browse/LU-11999
https://jira.whamcloud.com/browse/LU-8709
https://jira.whamcloud.com/browse/LU-12043
https://jira.whamcloud.com/browse/LU-9846
https://jira.whamcloud.com/browse/LU-11623
https://jira.whamcloud.com/browse/LU-12325
https://jira.whamcloud.com/browse/LU-10948
https://jira.whamcloud.com/browse/LU-12644
https://jira.whamcloud.com/browse/LU-12550
https://jira.whamcloud.com/browse/LU-10191
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Performance Improvements for Flash (2.12+)

►Reduce server CPU overhead to improve small flash IOPS (LU-11164)
• Reduced CPU usage translates directly to improved IOPS

►Avoid page cache on ldiskfs flash OSS (LU-11347)
• Avoids CPU/lock overhead/lock for page eviction

►TRIM flash storage on ldiskfs (LU-11355)
• Release unused blocks of filesystem via fstrim

►Self Extending Layouts (LU-10070, Cray)
• Avoids out-of-space in the middle of files
• Good for PFL with smaller flash OSTs than disk OSTs

►Continued reductions of overhead and latency
• Improve small, unaligned and interleaved writes
• Improve IO-500 ior-hard-write

2.13
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2.12
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https://jira.whamcloud.com/browse/LU-11164
https://jira.whamcloud.com/browse/LU-11347
https://jira.whamcloud.com/browse/LU-11355
https://jira.whamcloud.com/browse/LU-10070
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Ongoing ldiskfs Improvements (2.13+)

►Major ldiskfs features merged into upstream ext4/e2fsprogs
• Large xattrs (up to 64KB/xattr) stored in separate inode (ea_inode)
• Large directories over 10M entries/2GB (large_dir)
• Project quota accounting/enforcement (project)

►One more Lustre-specific feature remains to be merged to ext4/e2fsprogs
• Extended data in directory (dirdata) - needs unit test interface before merge

►Existing ext4 features available that could be used by Lustre on ldiskfs
• Efficient block allocation for large OSTs (bigalloc)

• Tiny files (1-600/3800ish bytes) stored directly in the MDT 1KB/4KB inode (inline_data)
• Metadata integrity checksums (metadata_csum)

►New ext4 features currently under development
• Data Verity – Merkle tree of data checksums stored persistently on read-only files
• Directory shrink – reduce directory block allocation as files deleted 

2.13

2.14

2.15
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File Level Redundancy (FLR) Enhancements (2.13+)

► Lustre-level mirroring for files, configured arbitrarily per file/directory
►Mirror NOSYNC flag + timestamp to allow file version/snapshot (LU-11400)
►Mount client directly on OSS without impacting recovery (LU-12722)
► "lfs mirror resync/delete --pool" to simplify tiering (LU-11022)
►Erasure coding adds redundancy without 2x/3x mirror overhead (LU-10911)
• Add erasure coding to new/old striped files after write done
• Leverage CPU-optimized EC code (Intel ISA-L) for best client performance
• For striped files - add N parity per M data stripes (e.g. 16d+3p)
• Fixed RAID-4 parity layout per file, declustered Parity across files to avoid IO bottlenecks

►HSM in composite layout (LU-10606)
• Allow multiple archives per file (S3, tape, ...)
• Allow partial file restore from archive

►File version/reflink within namespace?
• Access like VAX/VMS using "filename,1"?

Replica 0 Flash Object j (PRIMARY, PREFERRED)

Replica 1 HDD Object k (STALE) delayed resync

Replica 2 HSM S3 Archive

2.13
2.14

2.15

TBD

https://jira.whamcloud.com/browse/LU-11400
https://jira.whamcloud.com/browse/LU-12722
https://jira.whamcloud.com/browse/LU-11022
https://jira.whamcloud.com/browse/LU-10911
https://software.intel.com/en-us/storage/ISA-L
https://jira.whamcloud.com/browse/LU-10606


whamcloud.com

Miscellaneous Improvements (2.13/2.14)

►Overstriping allows multiple file stripes per OST (LU-9846, Cray/WC)
• Useful for shared-file workloads or very large OSTs

►lfs find integration with Lazy Size-on-MDT (LU-11367)
►Upstream kernel client cleanups still under active development/merge (ORNL/SuSE)
►Pool Selection Policy by filename extension, NID, UID/GID (LU-11234)
►Dynamic OSS page cache based on RPC IO size (LU-12071)
►fallocate() for file preallocation (ldiskfs only), hole punch (LU-3606)
►statx() for lightweight attribute fetching (LU-10934)
►O_TMPFILE for creating temporary files outside namespace (LU-9512)

2.13
2.14

https://jira.whamcloud.com/browse/LU-9846
https://jira.whamcloud.com/browse/LU-11367
https://jira.whamcloud.com/browse/LU-11234
https://jira.whamcloud.com/browse/LU-12071
https://jira.whamcloud.com/browse/LU-3606
https://jira.whamcloud.com/browse/LU-10934
https://jira.whamcloud.com/browse/LU-9512
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►Account/limit space for OSTs in a specific pool
• Control usage of small flash OSTs in tiered config

►Use existing Lustre quota infrastructure
• OST already tracks space per UID/GID/ProjID
• Pool usage based on sum of current OSTs in pool 

►Add pool quota limits per UID/GID/ProjID
• No extra accounting on the OSTs
• Only new aggregation/reporting by MDS

►Add MDT pools after OST pools complete
• Manage DoM space usage
• Allow different MDT storage classes (e.g. NVRAM)
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Pool Quotas for OSTs (LU-11023, Cray) (2.14+)

https://jira.whamcloud.com/browse/LU-11023
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►Protect from storage theft/mistakes network/admin snooping

►Encryption on Lustre client down to storage

• Applications see clear text in client cache

• Data is encrypted before sending to servers

• Data is decrypted after receiving from servers

• Servers/storage only see encrypted data/filenames

• Only client nodes need access to user encryption keys

• Transparent to backend filesystem/storage (ldiskfs/ZFS)

• Utilize larger client CPU/accelerator capacity

►Ext4/f2fs fscrypt library/tools base (don't invent it!)

• Tunable encryption setting/key(s) per directory tree

• Per-file encryption key(s), itself encrypted by user key
o Fast and secure deletion of file once per-file key is erased

• Filenames encrypted in MDT directory entries

Client-Side Data Encryption at Rest (LU-12755) (2.15)

https://jira.whamcloud.com/browse/LU-12755
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►Create new dirs/files without RPCs in client RAM (or local NVMe)
• Lock new directory exclusively at mkdir time
• Cache new files/dirs/data only in RAM/local NVMe until cache flush

►No RPC round-trips for file modifications in new directory
►Files globally visible on flush to MDS, normal usage afterward
• Flush top directory to MDS upon other client access, lock conflict
o Create top-level entries, exclusively lock new subdirs, release parent
o Repeat as needed for portion of namespace being accessed remotely
• Flush rest of tree in background to MDS/OSS by age or size limits

►Basic WBC prototype developed to test concept
• No cache/quota/space limits, no background flushing, no batching, ...
• 10-20x single-client speedup in early testing (untar, make, …)

►Aggregate operations to server to improve performance
• Batch operations in one RCP to reduce network traffic/handling
• Batch operations to filesystem to reduce disk IOPS
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Metadata Writeback Cache (WBC) (LU-10983) (2.15+)

https://jira.whamcloud.com/browse/LU-10983
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► Ext4 filesystem images used ad-hoc with Lustre in the past
• Read-only cache of many small files manually mounted on clients
• Root filesystem images for diskless clients/VMs

► Container Image is loopback ldiskfs mount on client
• Whole directory tree (maybe millions of files) in one Lustre image file
• Best for self-contained workloads (e.g. embarrassingly parallel)
• Optimize common AI, Genomics workloads
►CCI integrates container image handling with Lustre
• Image is registered to Lustre directory to automate future access
• Transparently mounts registered image at client on directory access
• Image data blocks read on demand from OST(s) and/or client cache
• Images still part of namespace, allow some sharing between clients
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Single Client 32KB File Create Performance (MDS vs. CCI)

Network Bandwidth Limit

► Kernel 4.15 CCI improvement due to improved kernel loopback driver
► Early testing of CCI prototype shows promise

(Ubuntu1804)
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► Low I/O overhead, few file lock(s), high IOPS per client
• Readahead and write merging for data and metadata
• Client-local in-RAM filesystem operations with very low latency

►Access, migrate, replicate image with large bulk OSS RPCs
• Thousands of files aggregated with MB-sized network transfers
• Leverage existing high throughput OSS bulk transfer rates
• 1GB/s OSS read/write provides about 30,000 32KB files/sec

►Unregister+delete CCI to remove all its files with a few RPCs
• Simplifies user data management, accounting, job cleanup
• Avoid MDS overhead dealing with large groups of related files
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CCI Access Models

► Need to integrate image handling on Lustre client/MDS
• Integrate CCI creation with job workflow is easiest

• CCI layout type on parent directory creates CCI upon mkdir
• Improve ldiskfs online resize to manage image size

► One client exclusively mounts CCI(s) and modifies locally
• For initial image creation/import from directory tree

• For workloads that run independently per directory tree

► Multiple clients read-only mount single image
• Shared input datasets (e.g. gene sequence, AI training)

► MDS exports shared read-write image to many clients
• Internal mount at MDS attaches image to namespace

• Use Data-on-MDT to transparently export image tree to clients

► Process whole tree of small files for HSM/tiering
• Efficiently migrate tree to/from flash tier, to/from archive
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Comparison and Summary of WBC vs. CCI

Metadata Writeback Cache

• Keep normal namespace
• Fully transparent to users and apps
• Very low latency metadata operations
• Faster single client performance
• Network batch RPCs improves other ops
• Lower total overhead due to fewer layers

Client Container Image

• Segregated directory subtree
• Needs directive from user/job to create
• Not for all usage patterns
• Faster aggregate system performance
• Network bulk IO reduces MDS workload
• Aggregation simplifies dataset handling
• Fast unlink, dataset prefetch

• Usable for metadata tiering/HSM

• Significant improvements for evolving HPC workloads
• Leverages substantial functionality that already exists
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