
Providing Persistent Client Caching
Services with a Lustre Global Namespace

Lingfang Zeng (曾令仿)
Wuhan National Laboratory for Optoelectronics (WNLO)

Huazhong University of Science and Technology (HUST)

China Lustre User Group 2018 (China LUG), Beijing, October 23, 2018

 Yingjin Qian, Xi Li, Shuichi Ihara, Carlos Aoki Thomaz, and Shilong Wang

@ DDN

 Andreas Dilger @ DDN Whamcloud

 Tim Süß, and André Brinkmann @ JGU

 Wen Cheng, Chunyan Li, Fang Wang, and Dan Feng @ HUST

With Contributions from

ACKNOWLEDGMENTS

Outline

BACKGROUND

PROBLEM &

TERMINOLOGY &

OBJECTIVES

METHODS

HIERARCHICAL

PERSISTENT

CLIENT

CACHING

IMPLEMENTATION

RW-PCC & RO-PCC &

RULE-BASED TRIGGERING &

POLICY ENGINE

EVALUATIONS

EXPERIMENT &

RESULTS

01 BACKGROUND
PROBLEM & TERMINOLOGY & OBJECTIVES

Hierarchical Storage Management (HSM)

https://semiengineering.com/a-new-memory-contender/

https://storageswiss.com/2018/01/10/enterprise-needs-to-learn-from-hpc-environments/

HPC workloads were too big to be stored only on flash

 Compute servers
 HBM

 NVRAM/SCM

 Performance storage
 DRAM

 SSD

 (performance HDD)

 Capacity storage
 DRAM

 Capacity HDD

HSM Tier

Supercomputer

NVRAM/SCM

SSD Burst Buffer

HDD/SSD Parallel File

System

SMR Object Store

DVD/Tape Archive

Lang’s Law: the more tiers, the more tears

Industry and Academic Solutions

 Andrew File System [TOCS’88, CMU]

 Coda File System [TOCS’88, CMU]

 FS-Cache [Linux Symposium’06, Red Hat]

 BWCC [CLUSTER’12, CAS]

 Nache [FAST’07, RU & IBM]

 Panache [FAST’10, IBM]

 Mercury [MSST’12, NetApp]

 GPFS’ LROC [IBM]

 TRIO [CLUSTER’15, FSU & ORNL & AU]

 BurstFS [SC’16, FSU & LLNL]

 MetaKV [IPDPS’17, FSU & LLNL]

 Dmcache [TOCS’88, CMU]

 Xcachefs [SBU, 2005]

 FlashCache [CASES’06, UM]

 Bcache [LWN, 2010]

Related Work

FSCache

NFS

AFS

ISOFS

CacheFS

CacheFiles

OtherCache

Reference: Howells, FS-Cache: A Network Filesystem Caching Facility, Red Hat UK Ltd.

Sivathanu+, A Versatile Persistent Caching Framework for File Systems, Stony Brook University, Technical Report FSL-05-05.

• Read-only cache

• Tolerate I/O failures in cache

• File system meta-operations (both

cache and source)

Related Work

Reference: Eshel+, Panache: A parallel file system cache for global file access, FAST'10

Wang+,An ephemeral burst-buffer file system for scientific applications, SC'16

Lustre File System
Management

Target (MGT)

Metadata Targets

(MDTs)

Metadata

Servers

(~10's)

NVMe MDTs

on client net

NVMe OSTs/LNet routers on

client network "Burst Buffer"

SAS Object Storage Targets

(OSTs)

SATA SMR Archive OSTs

(Erasure Coded)

Figure based on Andreas Dilger's Lustre User Group 2018 presentation: Lustre 2.12 and beyond (see http://opensfs.org/lug-2018-agenda/)

 Shared
 DDN IME @ ICHEC

 Cray Trinity @ LANL

HSM Tier

• Data plane

• Control plane

• Erasure coding

 Shared
 DDN IME @ ICHEC

 Cray Trinity @ LANL

HSM Tier

• Storage-side flash acceleration

• I/O histogram

• Performance statistics

• Dynamic flush

 Server-side
 Seagate Nytro NXD @ Sanger

 Shared
 DDN IME @ ICHEC

 Cray Trinity @ LANL

HSM Tier

• LPCC

 Server-side
 Seagate Nytro NXD @ Sanger

 Client-side
 Intel/Cray Aurora (A21) @ Argonne National Laboratory?

 Lustre Persistence Client Cache (LPCC)

 Distributed lock manager (DLM)
 Data and metadata consistency

 A separate namespace

 Excusive mode (EX) lock

 Concurrent read mode (CR) lock

 L.Gen field

Lustre’s DLM and Layout Lock

Server Namespace

Client2 NamespaceClient1 Namespace

Lock A
Lock B

Lock C

Lock A
Lock B Lock C

Lustre HSM

Refererence: Lustre manual. http://doc.lustre.org/lustre_manual.pdf

 Agents – Lustre file system clients running Copytool

 Coordinator – Act as an interface between the policy

engine, the metadata server(MDS) and the Copytool

 Logical two-tier (with physical multitier)
 Simple and efficient architecture (memory vs. disk)

 A global namespace
 Space efficient

 Latencies and lock conflicts can be significantly

reduced

 Caching reduces the pressure on (OSTs)
 small or random I/Os can be regularized to big sequential I/Os and

temporary files do not even need to be flushed to OSTs.

Key Idea

02 METHODS
HIERARCHICAL PERSISTENT CLIENT CACHING

Overview of LPCC Architecture

Overview of LPCC Architecture

Management Node

Lustre Clients

(~50,000)

OSSes

(~1,000)

MDSes

(~10)

MGT

MDTs

OSTs

OSTs

OSTs

OSTs

Management Network

High Performance

Data Network

HSM

Storage Network

Archive

HSM Agent

(Copytool)

Policy Engine

(Robinhood)

Policy Engine

Coordinator

Copytool

Copytool

03 IMPLEMENTATION
RW-PCC & RO-PCC & RULE-BASED TRIGGERING &

POLICY ENGINE

Lustre Read-Write PCC Caching (attach)

Lustre Read-Write PCC Caching (restore)

• Notify all clients

having cached the

layout to invalidate

their layouts

Lustre Read-only PCC Caching (attach)

Lustre Read-only PCC Caching (I/O flow)

 Different user, groups, and projects or
filenames
 E.g. (projid={500,1000} & fname=*.h5),(uid=1001)

 Quota limitation
 Cache isolation

 Auto LPCC caching mechanism

Rule-based Persistent Client Caching

 Policy engine
 Manage data movement

 Lustre changelogs
 Periodic prefetching decision

 LRU and SIZE

Cache Prefetching and Replacement

04 EVALUATIONS
EXPERIMENT & RESULTS

 CentOS 7 Linux (3.10.0) and Lustre (2.11.53)

 All client nodes included
 An Intel Xeon E5-2650 processors with 128GB of memory

 512GB Samsung 840 PRO series SSD as LPCC cache (ext4-based LPCC)

 Lustre OSS DDN SFA14KXE with 10 OSTs (ext4-based
ldiskfs)

 MDS Toshiba 200GB SSD (ext4-based ldiskfs)

 “stripe=n” means file data is striped over n OSTs

 Lustre Data on MDT (DoM)
 To improve small file performance by allowing the data on the MDT

 FS-Cache mechanism

Evaluation Setup

 fio

 IOR (file-per-processor (FPP))

 mdtest

 filebench

 HACC I/O
 HPC application simulation in FPP mode

 Compliebench
 Simulate kernel compiles with target to metadata and small file operations

Benchmark Tools

Single Thread Performance

RW-PCC Scalability Evaluation

Metadata Performance

RW-PCC achieves the best

Small Files with Various Size

Metadata Performance Write Size =0

 File create with no data is slow

 But, the better small write performance on local
SSDs compensated for this and allowed a speedup
compared to DoM and standard lustre

Small File for Compilebench

Read Performance

• File data is read for

the first time and

loaded into cache

• By repeating the test

immediately after the

“Cold” one

• Directly from the

persistent cache after

cleaning all page

caches

RO-PCC Scalability Evaluation

 RO-PCC performance in “Warm” and “Cache”
state

 Scale nearly linearly with the increasing client
number

Metrics Statistic

“SIZE” evicts the least number of cached file

File Hit Rate

• Without cache

shrinker

• With cache

shrinker

“LRU” has the highest hit rate

 A global namespace
 Space efficient

 Simple and transparent

 Less overhead, and network latencies and
lock conflicts significantly reduced

 Simpler I/O stack: no interference with I/Os
from other clients

 Small requirements on the HW inside the
client nodes (SSD/HDD)

 LPCC reduces the pressure on the OSTs

Summary

Thanks for your attention!

