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01 BACKGROUND
PROBLEM & TERMINOLOGY & OBJECTIVES



Hierarchical Storage Management (HSM)

https://semiengineering.com/a-new-memory-contender/

https://storageswiss.com/2018/01/10/enterprise-needs-to-learn-from-hpc-environments/

HPC workloads were too big to be stored only on flash



 Compute servers
 HBM

 NVRAM/SCM

 Performance storage
 DRAM

 SSD

 (performance HDD)

 Capacity storage
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 Capacity HDD

HSM Tier

Supercomputer

NVRAM/SCM

SSD Burst Buffer

HDD/SSD Parallel File 

System

SMR Object Store

DVD/Tape Archive

Lang’s Law: the more tiers, the more tears



Industry and Academic Solutions

 Andrew File System [TOCS’88, CMU]

 Coda File System [TOCS’88, CMU]

 FS-Cache [Linux Symposium’06, Red Hat]

 BWCC [CLUSTER’12, CAS]

 Nache [FAST’07, RU & IBM]

 Panache [FAST’10, IBM]

 Mercury [MSST’12, NetApp]

 GPFS’ LROC [IBM]

 TRIO [CLUSTER’15, FSU & ORNL & AU]

 BurstFS [SC’16, FSU & LLNL]

 MetaKV [IPDPS’17, FSU & LLNL]

 Dmcache [TOCS’88, CMU]

 Xcachefs [SBU, 2005]

 FlashCache [CASES’06, UM]

 Bcache [LWN, 2010]



Related Work

FSCache

NFS

AFS

ISOFS

CacheFS

CacheFiles

OtherCache

Reference: Howells, FS-Cache: A Network Filesystem Caching Facility, Red Hat UK Ltd.

Sivathanu+, A Versatile Persistent Caching Framework for File Systems, Stony Brook University, Technical Report FSL-05-05.

• Read-only cache

• Tolerate I/O failures in cache

• File system meta-operations (both

cache and source)



Related Work

Reference: Eshel+, Panache: A parallel file system cache for global file access, FAST'10

Wang+,An ephemeral burst-buffer file system for scientific applications, SC'16



Lustre File System
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Metadata 
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Figure based on Andreas Dilger's Lustre User Group 2018 presentation: Lustre 2.12 and beyond (see http://opensfs.org/lug-2018-agenda/)



 Shared
 DDN IME @ ICHEC

 Cray Trinity @ LANL

HSM Tier

• Data plane

• Control plane

• Erasure coding



 Shared
 DDN IME @ ICHEC

 Cray Trinity @ LANL

HSM Tier

• Storage-side flash acceleration

• I/O histogram

• Performance statistics

• Dynamic flush

 Server-side
 Seagate Nytro NXD @ Sanger



 Shared
 DDN IME @ ICHEC

 Cray Trinity @ LANL

HSM Tier

• LPCC

 Server-side
 Seagate Nytro NXD @ Sanger

 Client-side
 Intel/Cray Aurora (A21) @ Argonne National Laboratory?

 Lustre Persistence Client Cache (LPCC)



 Distributed lock manager (DLM)
 Data and metadata consistency

 A separate namespace

 Excusive mode (EX) lock

 Concurrent read mode (CR) lock

 L.Gen field

Lustre’s DLM and Layout Lock

Server Namespace

Client2 NamespaceClient1 Namespace

Lock A
Lock B

Lock C

Lock A
Lock B Lock C



Lustre HSM

Refererence: Lustre manual. http://doc.lustre.org/lustre_manual.pdf

 Agents – Lustre file system clients running Copytool

 Coordinator – Act as an interface between the policy 

engine, the metadata server(MDS) and the Copytool



 Logical two-tier (with physical multitier)
 Simple and efficient architecture (memory vs. disk)

 A global namespace
 Space efficient

 Latencies and lock conflicts can be significantly 

reduced

 Caching reduces the pressure on (OSTs)
 small or random I/Os can be regularized to big sequential I/Os and 

temporary files do not even need to be flushed to OSTs.

Key Idea



02 METHODS
HIERARCHICAL PERSISTENT CLIENT CACHING



Overview of LPCC Architecture



Overview of LPCC Architecture
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03 IMPLEMENTATION
RW-PCC & RO-PCC & RULE-BASED TRIGGERING & 

POLICY ENGINE



Lustre Read-Write PCC Caching (attach)



Lustre Read-Write PCC Caching (restore)

• Notify all clients 

having cached the 

layout to invalidate 

their layouts



Lustre Read-only PCC Caching (attach)



Lustre Read-only PCC Caching (I/O flow)



 Different user, groups, and projects or 
filenames
 E.g. (projid={500,1000} & fname=*.h5),(uid=1001)

 Quota limitation
 Cache isolation

 Auto LPCC caching mechanism

Rule-based Persistent Client Caching



 Policy engine
 Manage data movement

 Lustre changelogs
 Periodic prefetching decision

 LRU and SIZE

Cache Prefetching and Replacement



04 EVALUATIONS
EXPERIMENT & RESULTS



 CentOS 7 Linux (3.10.0) and Lustre (2.11.53)

 All client nodes included
 An Intel Xeon E5-2650 processors with 128GB of memory

 512GB Samsung 840 PRO series SSD as LPCC cache (ext4-based LPCC)

 Lustre OSS DDN SFA14KXE with 10 OSTs (ext4-based 
ldiskfs)

 MDS Toshiba 200GB SSD (ext4-based ldiskfs)

 “stripe=n” means file data is striped over n OSTs

 Lustre Data on MDT (DoM)
 To improve small file performance by allowing the data on the MDT

 FS-Cache mechanism

Evaluation Setup



 fio

 IOR (file-per-processor (FPP))

 mdtest

 filebench

 HACC I/O
 HPC application simulation in FPP mode

 Compliebench
 Simulate kernel compiles with target to metadata and small file operations

Benchmark Tools



Single Thread Performance



RW-PCC Scalability Evaluation



Metadata Performance

RW-PCC achieves the best



Small Files with Various Size



Metadata Performance Write Size =0

 File create with no data is slow

 But, the better small write performance on local 
SSDs compensated for this and allowed a speedup 
compared to DoM and standard lustre



Small File for Compilebench



Read Performance

• File data is read for 

the first time and 

loaded into cache

• By repeating the test 

immediately after the 

“Cold” one

• Directly from the 

persistent cache after 

cleaning all page 

caches



RO-PCC Scalability Evaluation

 RO-PCC performance in “Warm” and “Cache” 
state

 Scale nearly linearly with the increasing client 
number



Metrics Statistic

“SIZE” evicts the least number of cached file



File Hit Rate

• Without cache 

shrinker

• With cache 

shrinker

“LRU” has the highest hit rate



 A global namespace
 Space efficient

 Simple and transparent

 Less overhead, and network latencies and 
lock conflicts significantly reduced

 Simpler I/O stack: no interference with I/Os
from other clients

 Small requirements on the HW inside the 
client nodes (SSD/HDD)

 LPCC reduces the pressure on the OSTs

Summary



Thanks for your attention!


