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Overview of Features
Features completed for 2.8
§ LFSCK Phase 4 – Performance Improvements (Intel, OpenSFS)
§ DNE Phase 2 Striped Directories – Asynchronous Commits (Intel, OpenSFS)
§ Client IO Simplification (Intel, OpenSFS)
§ Multiple metadata-modifying RPCs (multi-slot last_rcvd) (Bull= Atos)
§ Kerberos/GSS revival (Bull=Atos, Seagate)

Features starting development for 2.9 and later
§ UID/GID mapping (IU)
§ ZFS* Enhancements (Intel, LLNL)
§ Project quotas (DDN)
§ Shared-key/GSS crypto (IU)
§ Progressive File Layout Prototype (Intel & ORNL)
§ Data on MDT Prototype (Intel)



3

ZFS Enhancements (Intel/LLNL, 2.9+)

Changes for ZFS OSD (2.9) 

§ 1MB+ ZFS blocksize (IO performance, LLNL)

§ Read IO optimization (IO performance, Intel)

§ ZIL support for fast sync (IO & metadata performance, Intel)

Changes to core ZFS code (2.9+)

§ Inode quota accounting (base functionality, Intel)

§ Large dnodes (metadata performance, LLNL)

§ Parity declustering (reliability & availability, Intel)

§ Distributed hot spares (reliability & availability, Intel)
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Miscellaneous features
Code cleanups (Cray*/Intel®/ORNL)

§ Update to match upstream kernel coding style

§ Port patches to/from upstream kernel

§ Clean up and/or eliminate server kernel/ldiskfs patches

Project Quotas (DDN*)

§ Allow quota tracking on directory subtrees independent of UID/GID

§ Not strictly hierarchical, can be multiple trees with the same project

Network Authentication and Encryption (Bull*/IU*/Seagate*)

§ Kerberos user/node authentication, RPC encryption

§ Shared Secret Key node authentication, RPC encryption
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Data on MDT (Intel, 2.10+)
Efficiently store small files on the MDT(s)

§ Avoid OST BRW RPC + disk seek + OST lock for each file access

§ Use small-file optimized MDT storage (RAID-10/SSD/NVRAM)

§ Avoid RAID-5/6 read-modify-write for small writes

Space usage on MDT(s) managed by quota

Small files are determined by the file layout

§ Maximum MDT file size can be specified by min(user, admin)

§ Typically expected to be <= 1MB, dependent on MDT space

Complementary with DNE 2 striped directories

§ Scale small file IOPS horizontally with multiple MDTs
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DoM layout chosen at file creation time like files on OSTs

§ Can’t do it after write because objects are allocated at open()

§ Default DoM striping on subdirectories inherited by newly created files

http://cdn.opensfs.org/wp-content/uploads/2014/04/D1_S10_LustreFeatureDetails_Pershin.pdf

http://wiki.opensfs.org/images/b/be/DataonMDSDesign_HighLevelDesign.pdf

Data on MDT Implementation (Intel, 2.10+)

http://cdn.opensfs.org/wp-content/uploads/2014/04/D1_S10_LustreFeatureDetails_Pershin.pdf
http://wiki.opensfs.org/images/b/be/DataonMDSDesign_HighLevelDesign.pdf
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Composite Layouts (Intel, 2.10)
Add Composite Layouts for regular files

§ Allow describing more complex file structures and interactions

§ A composite layout contains multiple components (LOV_MAGIC_V[13])

§ Composite layouts do not restrict components themselves

§ Specific features may impose their own restrictions

Struct lov_comp_md_v1 {
__u32 lcm_magic; /* LCM_MAGIC_V1 */
__u32 lcm_size; /* overall size including this structure */
__u32 lcm_layout_gen; /* incremented each time layout changes */
__u16 lcm_flags; /* LCM_FL_RS_READ_ONLY, LCM_FL_RS_SYNC_PENDING, ... */
__u16 lcm_entry_count; /* number of components in lcm_entries[] */
__u64 lcm_padding[2];
struct lov_comp_md_entry_v1 lcm_entries[];

};
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Composite Layouts Components
§ A Component describes one extent of a composite file

§ Each component is a separate plain layout within a file
– Currently LOV_MAGIC_V[13] (RAID-0) layouts are handled
– Other layout patterns can be added in the future (LOV_MAGIC_DOM, …)

§ Components cannot be nested

§ Objects are not shared between components
Struct lov_comp_md_entry_v1 {

__u32 lcme_id; /* unique identifier of component within composite */
__u32 lcme_flags; /* LCME_FL_STALE, LCME_FL_PRIMARY, LCME_FL_PREFERED */
struct lu_extent lcme_extents; /* file logical extent for component */
__u32 lcme_offset; /* offset of component layout from start of composite */
__u16 lcme_size; /* size of component layout data in bytes */
__u64 lcm_padding;

};
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What can be done with Composite Layouts?
Progressive File Layouts
§ Non-overlapping component layouts for different parts of the file
§ Increasing stripe count as file grows larger is expected, but not required

File Level Replication
§ Overlapping component layouts provide redundancy
§ Replica components can be marked stale or offline if OST failure is detected
§ Resync stale components when OST online or add new replicas for failed OSTs

File versioning
§ Replica components that are not updated by later writes or resync’d
§ Old versions could be accessed via lfs or via ioctl() on open file descriptor

HSMv2 partial file restore
§ One component for each archived copy, along with a timestamp/version for age
§ Regular file component(s) for online data, may not cover whole file
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Allow stripe count to increase for larger files
§ Improve aggregate IO bandwidth for large files
§ Do not add overhead for small files
§ Start with one stripe, add stripes incrementally as file size increases

Covered (grey) region of component is inaccessible/sparse

§ Allows merging/replication/separation of components for plain files

Progressive File Layouts (Intel/ORNL, 2.10)
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PFL Prototype Performance Comparison
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File Level Replication
Allow redundancy at the file level
§ Avoid the need for multi-path storage or failover (local server storage OK)
§ Redundancy can be selected/added/removed on a per-file basis
§ Reads balanced between replicas, recover read errors from replica
§ Can tune IO overhead/performance vs. file availability

Phase 1: Delayed replication by external resync tool
§ For read-mostly workloads, minimizes write overhead at client
§ Only primary replica modifed, non-primary replica(s) marked stale on first write
§ ChangeLog/copytool drives resync tool after write finished, or if OST is offline in Phase 2

Phase 2: Replica updated immediately by client
§ Client sends writes to each OST, marks component stale if write fails
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