
John Hammond, Lai Siyao

High Performance Data Division

Oct 2016

2

Legal Information
This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel
representative to obtain the latest forecast, schedule, specifications and roadmaps.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult
other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit
http://www.intel.com/performance.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on
system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at
http://www.intel.com/content/www/us/en/software/intel-solutions-for-lustre-software.html.

Intel technologies may require enabled hardware, specific software, or services activation. Check with your system manufacturer or retailer.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant
Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata
are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as
well as any warranty arising from course of performance, course of dealing, or usage in trade.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or
instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from
future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

Intel, the Intel logo and Intel® Omni-Path are trademarks of Intel Corporation in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

© 2016 Intel Corporation

3

Lustre security infrastructure has had some gaps

Uses standard POSIX file access control at filesystem level, like NFS

Has not previously had strong user or client authentication at the server

• Depends on network access control - address filtering or physical isolation

• Clients are trusted to provide accurate user identification

But... multiple industries require strict access controls to sensitive data

• Protected and personally-identifiable health information

• Classified data segregated based on multiple classification levels

4

New security capabilities are emerging

Existing and new security-related features are expected to become
available

§ SELinux* file labeling and Mandatory Access Control

§ Nodemaps to classify clients by their NID with UID/GID maps per nodemap

§ GSS/Kerberos node and user authentication and network encryption

§ GSS/Shared Secret Key node authentication and network encryption

§ Namespace subdirectory mounts

5

Security Component Overview

Authentication: Identification of an entity or principal

• “I am who I say I am” - e.g. Kerberos, SSK

Authorization: Grant access rights to an asset for authenticated principal

• “I’m allowed to connect to this service” – e.g. Kerberos, SSK

• “I’m allowed to access these files” – e.g. SELinux, UNIX permissions

Encryption: Help protect information from unauthorized interception

• "I can safely communicate over this untrusted network" - e.g. Kerberos, SSK

6

SELinux - Community 2.8, Intel® Enterprise Edition
for Lustre* Software 3.0
Label files and enforce security policy based on process context

• Access enforced by kernel, users can't change policy
• Allow SELinux labels and policies to be set for all files
• Label stored in xattr, client open fetches label, caches it
• Allows enabling enforcement (MLS, RBAC) on clients

Limitations of current implementation
• No SELinux enforcement by server processes yet

• Root compromise on client could disable SELinux
• This is a significant problem beyond the scope of Lustre
• Allow only trusted clients to connect using Kerberos or SSK

• Certification test cases not public, tied to specific hardware/software config

Level: Top secret

Level: Secret

Level: Confidential

Level: UnclassifiedN
o

re
ad

 o
f h

ig
he

r l
ev

el
s N

o w
rite to low

er levels

7

Identify clients from different administrative domains

• Group clients by NID into a nodemap on MDS/OSS

• Administrator sets uidmap/gidmap for each nodemap

• Link client to a specific nodemap at connection time

MDS and OSS map client's UID/GIDs to server UID/GID

• UID/GID authentication on MDS, quota on MDSs/OSSs

• Map client root to non-0 UID or squash it, per nodemap

• Map unknown UID/GIDs to per-nodemap squash UID/GID

• Or reject access from unknown UID/GIDs completely

• Only clients from that site can access owned by them

MDS

Site 1

Site 2

Site 3

UID/GID Mapping - Community 2.8/2.9

Nodemap1

Nodemap2

Nodemap3

Nodemap1

uid0 -> 11999

uid1000 -> 11000

uid1001 -> 11001

uid1002 -> 11002

Nodemap2

uid0 -> X

uid1000 -> 21000

uid1001 -> 21001

uid1002 -> 21002

Nodemap3

uid1000 -> 11002

uid1001 ->

21002

uid1002 -> X

uid1005 -> 31003

8

GSS/Kerberos and GSS/Shared Secret Keys
Different approaches for achieving similar goals
Kerberos - Community Edition 2.8, Intel® Enterprise Edition
for Lustre* Software 3.0

• Authentication for nodes, and for users on the MDS
• Well known protocol, effective, but complex to setup
• Cross-realm authentication hard technically/politically

IU SSK - scheduled for Community Edition 2.9
• Self-contained in Lustre, easier to configure
• Crypto keys associated with a nodemap, positively identify clients
• Configure different keys for client/subnet/site, replace separately
• Uses kernel high-performance CPU offload of crypto calculations

Intel® Cloud Edition for Lustre* Software can use IPSec on TCP, but not with IB/OPA RDMA

Client 1

Client 3Client 2

9

Mount subdirectory of filesystem from MDS
• mount -t lustre mgsname:/fsname/subdir /mnt/point
• Client receives FID of subdir as root directory for mountpoint
• .lustre pseudo-directory not in subdirectory mount
• Client cannot look up names (fid2path) outside directory tree
• Clients normally share MDS and OSS resources

• Unless admin isolates subtree to a dedicated DNE MDT

Not in itself a security feature, but can be part of one
• Linked to nodemaps and secure client authentication
• Can provide isolated containers to identified clients

Subdirectory mounts/filesets - Community 2.9

/proj

/east /west

10

Security benefits of open development and review
All listed features openly developed and reviewed on master branch

• This leverages skills and perspectives from different organizations

• Increases pool of reviewers, more likely to find bugs

• Enhancements can target a wider variety of deployment scenarios

Good participation from multiple organizations
• UID/GID mapping, SSK design and code reviewed by several parties

• Testing of Kerberos and SELinux code by multiple vendors

• Review of Shared Key Crypto by Intel® internal security team ongoing

Growing developer community adds resources, interest, enhancements

11

Ongoing hardening of Lustre code
Static analysis of entire code base for potential defects

• Several different tools being used - Coverity*, smatch, clang, and others

• Each one checks for different potential defects and security issues

• Some run on every patch, others run periodically on whole tree

Testing with fault injection to harden error handling paths and recovery

• Memory allocation errors, network message delay/loss

Dead code cleanup and simplification while adding several new features

• Fewer LOC = fewer defects, easier to understand and find higher-level bugs

• 2.5.0 to 2.8.0: 286k insertions - 257k deletions = net growth only +30kLOC

12

What is on the horizon?
Combining these features allows powerful new functionality

• Some final integration needed before they all work together seamlessly

Isolated subdirectory exports to clients => sub-filesystem containers
• Client auth + nodemap + subdir mount + rejection of unknown UID/GIDs
• SELinux + client auth to segregate files with different classification levels
• Allows multi-tenant cloud hosting, virtual environments, classified data

Need feedback from users and deployments for future directions
• Client-side data compression + encryption?

• Per-user keys, secure on disk, safe erase, less overhead on server
• Need specific security threat model to determine gaps and priorities

