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 OI scrub, layout LFSCK, namespace LFSCK
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Lustre* consistency issues

3
*Other names and brands may be claimed as the property of others.



 Dangling reference: where did my file/data go?

 Name entry references non-exist or invalid MDT-object.

 MDT-object references non-exist or invalid OST-object (via its LOV EA).

 Orphan object: who consumed my space?

 No name entry references the MDT-object.

 No MDT-object references the OST-object.

 Repeated reference: why has my data been overwritten?

 Multiple MDT-objects reference the same OST-object.

 Multiple objects references the same block.

– Backend local consistency verification tools, such as e2fsck for ldiskfs/extN, 
focus on that. Lustre will use them and put more effort on other distributed 
consistency issues verification.
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 Object Index (OI)

 OI is used for mapping the object’s global FID to server backend local 
identifier (such as <inode#, generation#> for ldiskfs).

 Lost the OI mapping will cause the object to be invisible when locate the 
object by FID.

 Corrupted OI mapping may misguide the application to access some 
unexpected object and cause unpredictable result.

 FID-in-dirent (directory entry)

 To accelerate traversing directory, the FID of the object that is referenced 
by the dirent is appended after the name in the dirent.

 Lost the FID-in-dirent will cause additional reading FID from the object 
(maybe load from disk) when traverse the directory (READDIR).

 Corrupted FID-in-dirent may misguide the application to access some 
unexpected object and cause unpredictable result.
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Lustre* consistency framework
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Lustre* object stores its FID in the XATTR_NAME_LMA extended 
attribute (EA) for related OI mapping consistency self-
verification.

 To check whether the object found by the FID is the expect one or not. If 
NOT, the application will get -EREMCHG (-78).

 The FID-in-LMA can be used to rebuild the Lustre OI.
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The MDT-object stores its position (in namespace) information 
(the name and the parent FID) as XATTR_NAME_LINK EA.

 To knows where the given MDT-object resides in the (original) namespace.

 The linkEA can be used to rebuild the Lustre* namespace.
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The OST-object stores the FID of its parent MDT-object that 
references the OST-object as XATTR_NAME_FID EA.

 To check whether the OST-object to be operated belongs to the given target 
(MDT-object) or not.

 The parent FID for OST-object can be used to rebuild the MDT-object LOV 
EA.
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Lustre* consistency verification tools -
LFSCK
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 Online verification

 LFSCK routine verification with normal Lustre* services non-stopped.

 Speed is controllable to avoid affecting normal services too much.

 Robust

 Allow servers (MDT/OST) to join/exit the LFSCK dynamically.

 Resume the LFSCK from the latest checkpoint (breakpoint).

 Scalable

 LFSCK on thousands of servers in parallel, the aggregate verification 
speed will increase as the servers count increasing.

 Support DNE (Distributed NamespacE) mode consistency verification.
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LFSCK is driven by the LFSCK engines to verify the objects in the 
whole/partial system.

 Each Lustre* MDT/OST has a main engine.

 All the main engines are equal, no central control-point.

 All the main engines are relative independent.

– Each main engine only verifies the objects in its own scope.

 Each main engine on MDT may has some assistant engine(s).

 The main engine and the assistant engine(s) compose some asynchronous 
pipeline(s).

– The main engine loads objects (from disk or network) and input the pipeline.

– The assistant engine verifies the objects consistency from the pipeline output.
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LFSCK engines
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Every LFSCK component corresponds to one of the LFSCK 
verification types (OI scrub/layout LFSCK/namespace LFSCK). 
LFSCK uses the LFSCK component’s APIs to verify the object.
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Special for ldiskfs-based backend to verify OI files.

 Basic principle

 Trust FID-in-LMA if LMV EA is there.

 Linearly scan all objects on the local device.

 Use cases

 Re-create OI files totally

– Some OI files are lost.

– Split OI files to improve OI efficiency.

– Shrink OI size to release the disk space occupied by empty FID mappings.

 Re-build FID mappings after MDT file-level backup/restore

– Backend local identifier (inode#/generation#) cannot be preserved when MDT 
file-level backup, but the FID mappings in OI are kept after the restoring.

 Recover backend orphans on OST from /lost+found to Lustre* OI
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LFSCK component – OI scrub
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For regular striped file layout consistency between MDT and 
OST.

 Basic principle

 For a regular file, the MDT-object references the stripes (OST-objects) via 
LOV EA; the OST-object back references the MDT-object via PFID EA.

 The LFSCK on the MDT verifies the stripes in all MDT-objects’ LOV EA.

 The LFSCK on the OST records non-verified OST-objects that are 
orphans.

 Share the same linear iterator as OI scrub used for scanning.

 Use cases

 Guarantee that your data is written to the right OST-object(s).

 Find the lost data via re-generating the lost or corrupted LOV EA.

 Retrieve the lost space (occupied by the stale orphan OST-objects).
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LFSCK component – layout LFSCK
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For local/global namespace consistency inside/among MDT(s).

 Basic principle

 Traverse the namespace on MDT, for each name entry, check whether the 
referenced MDT-object has linkEA to back references the name entry.

 Statistics the name entries that reference the same MDT-object to verify 
the MDT-object’s nlink attribute.

 Share the linear iterator, and plus namespace-based directory traversing.

 Use cases

 Guarantee that the name entry references the right MDT-object.

 Find the lost file/MDT-object via re-generating the name entry.

 Retrieve the lost space (occupied by the stale orphan MDT-objects).

 Guarantee that the nlink attribute matches the real name entries.

 Verify FID-in-dirent, name hash for striped directory, and so on.
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LFSCK component – namespace LFSCK
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lfsck_start <-M | --device {MDT,OST}_device> [-A | --all] [-c | --create_ostobj [on | off]]

[-C | --create_mdtobj [on | off]] [-e | --error {continue | abort}] [-h | --help]

[-n | --dryrun [on | off]] [-o | --orphan] [-r | --reset] [-s | --speed ops_per_sec_limit]

[-t | --type check_type[,check_type...]] [-w | --window_size size]

options:

-M: device to start LFSCK/scrub on

-A: start LFSCK on all MDT devices

-c: create the lost OST-object for dangling LOV EA (default 'off', or 'on')

-C: create the lost MDT-object for dangling name entry (default 'off', or 'on')

-e: error handle mode (default 'continue', or 'abort')

-h: this help message

-n: check with no modification (default 'off', or 'on')

-o: repair orphan OST-objects

-r: reset scanning to the start of the device

-s: maximum items to be scanned per second (default '0' = no limit)

-t: check type(s) to be performed (default all)

-w: window size for async requests pipeline
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User Interfaces – start LFSCK



lfsck_stop <-M | --device {MDT,OST}_device>

[-A | --all] [-h | --help]

options:

-M: device to stop LFSCK/scrub on

-A: stop LFSCK on all MDT devices

-h: this help message
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User Interfaces – stop LFSCK



 Query OI scrub

 /proc/fs/lustre/osd-ldiskfs/${FSNAME}-MDTxxxx/oi_scrub

 /proc/fs/lustre/osd-ldiskfs/${FSNAME}-OSTxxxx/oi_scrub

 Query layout LFSCK

 /proc/fs/lustre/mdd/${FSNAME}-MDTxxxx/lfsck_layout

 /proc/fs/lustre/obdfilter/${FSNAME}-OSTxxxx/lfsck_layout

 Query namespace LFSCK

 /proc/fs/lustre/mdd/${FSNAME}-MDTxxxx/lfsck_namespace
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User Interfaces – query LFSCK



Congratulations if you are using Lustre* 2.3 or newer!

 LFSCK 1 – OI scrub & object-table based linear iteration

 Released in Lustre 2.3

 LFSCK 1.5 – FID-in-dirent & linkEA for local MDT

 namespace LFSCK part1

 Released in Lustre 2.4

 LFSCK 2 – layout LFSCK

 Released in Lustre 2.6

 LFSCK 3 – LFSCK for DNE

 Namespace LFSCK part2

 To be released in Lustre 2.7

 …
20
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 CPU

 1 * Intel® Xeon® CPU E5620 @ 2.40GHz, 8 logic processors

 RAM

 32GB DDR3 RAM on each server (MDS/OSS) node

 Storage

 500GB 7200 rpm SATA disk on each server node

 Network

 InfiniBand QDR

 Logic servers

 4 MDS nodes, 1 MDT per MDS

 4 OSS nodes, 2 OSTs per OSS

 1 client node, multiple mount points
21

LFSCK performance test environment
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Layout LFSCK performance
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Layout LFSCK impact on others
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